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Preface 

The seaweeds are a diverse group of large marine macroalgae that are as important to the 

marine world as land plants are to our terrestrial world.  Seaweeds were the precursors to land 

plants, and like land plants, they are critical primary producers, forming living links between the 

inorganic and the organic world, using photosynthesis to convert CO2 and nutrients into living 

biomass.  These primary producers support and encourage other marine life through the 

production of oxygen, contribution to marine food webs, and by providing structure and habitat 

for refuge, breeding, and nursery grounds for fish and invertebrates.  Seaweeds are an 

important resource for humans.  Coastal peoples have always utilized seaweeds for food, 

minerals, medicine, fertilizer and fodder, and these sea-plants continue to provide for an ever-

increasing world population.  A multi-billion dollar industry worldwide, seaweeds are consumed 

as nutritious sea vegetables, processed to extract valuable phycocolloids including agar, 

carrageenan, and alginate, and utilized in the agricultural industries for animal fodder or plant 

fertilizers.   

Wild harvest still constitutes a significant portion of seaweed production, however, there is an 

ever increasing amount of seaweed production from aquaculture, principally in Asia (China, 

Korea and Japan) and South America (Chile).  Seaweed aquaculture makes up about 24% of all 

aquaculture production (~19 million metric tons) with a value of ~US $5.65 billion (FAO, 2012).  

Most of the cultured harvest is the kelps, Saccharina japonica and Undaria pinnatifida, the red 

algal carrageenophytes species including Kappaphycus and Eucheuma, the edible red algal 

species known as nori (including Porphyra and Pyropia species) and the red algal agarophyte 

species known as Gracilaria.  China is the world’s top producer of cultured seaweeds, though 

other countries in Asia (Japan, Korea, and the Philippines) and in Europe (France, Ireland, 

Norway, Scotland, and Spain) also grow seaweed.  In North America, seaweed industries are 

mainly small wild-harvest cottage operations located along the East and West Coasts of Canada 

and the United States, however, there is a newly developed sugar kelp industry in the Gulf of 

Maine (Maine and New Brunswick, Canada). 

As populations expand, culture of seaweeds will be important to supplement the wild resource.  

Seaweeds can be cultivated like land plants, in the sea on suspended lines, rafts, or nets, or on 

land in tank-based culture systems.  A sustainable, low- impact process, seaweed culture can 

provide much needed employment and independence to rural coastal areas.  The development 

of a seaweed aquaculture industry can also encourage development of other aquacultured 

species higher up in the food chain, since seaweeds are bioextractive organisms, taking up 

excess nutrients generated by other species, such as fish or shrimp.  The integrated culture of 

fed aquaculture (fish and shrimp) with extractive aquaculture (seaweeds and shellfish) has been 

called ‘Integrated Multi-Trophic Aquaculture’, or IMTA.  The IMTA concept is an ecologically 
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based model that couples an inorganic bioextractive organism (seaweed) with an organic 

bioextractive organism (shellfish) to balance the intensive culture of fed organisms (finfish and 

shrimp), in order to produce a more sustainable, cleaner, and diversified aquaculture system 

(Neori et al.,  2007).  The development of new ecologically based, sustainable culture 

technologies will ensure future employment for coastal communities, healthier coastal 

ecosystems, and the protection of important wild populations.   

There are many interesting seaweed species in the Northeast with great economic and 

environmental potential.  There are economically important kelp species—Alaria esculenta, 

Laminaria digitata, and Saccharina latissima, which are all large brown algae. They are the 

largest of the North American seaweeds, some species exceeding 10 m in length.  They are an 

excellent source of iodine and other trace minerals, as well as a source of alginate, a 

phycocolloid used in many different industries (Sahoo and Yarish, 2005). The native red 

seaweeds of interest in the Northeast include Gracilaria tikvahiae, Chondrus crispus, and 

Porphyra/Pyropia (hereafter referred to as Porphyra) species.  Gracilaria species are cultivated 

at a large scale in some countries for food, as a feed for abalone, and for agar, an important 

phycocolloid in the food, medical, and microbiological industries.  Chondrus crispus is cultured 

in land- based tank systems for sea vegetables and wild harvested for a variety of carrageenans, 

which are important in the food and consumer products industries as thickeners and stabilizers.  

Porphyra species are cultivated on nets in Asia and are pressed and dried into the valuable nori 

sheets that are an integral part of the Asian diet. In New England, the development of Porphyra 

cultivation in land-based recirculating IMTA systems has been a topic of particular interest 

(Yarish and Pereira, 2008; Pereira and Yarish, 2010). However, it will be the goal of this manual 

to introduce cultivation techniques for native red alga Gracilaria tikvahiae to the inquisitive 

aquaculturalists, as well as providing a resource to coastal managers.  A video that compliments 

this Manual on Gracilaria cultivation may be found at 

http://digitalcommons.uconn.edu/wracklines/71/. 
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Introduction 

Worldwide demand for seafood has increased steadily over the years, while for the past 20 

years the amount of seafood harvested from wild populations has remained constant (FAO, 

2002, 2003, 2006, 2010, 2012; New 1999). The increased demand has been met entirely 

through marine aquaculture, which is a multi-billion dollar industry (FAO, 2010, 2012; Fig 1). 

The United States is a major consumer of marine aquaculture products, yet we grow only a 

small fraction of what we consume (FAO, 2010). A major obstacle to the growth of a U.S. 

aquaculture industry has been the need to find environmentally sustainable methods of 

farming fish and crustaceans. Two issues of particular concern are 1) nutrient loading of coastal 

waters from effluent generated by coastal and shore-based fish aquaculture operations, and 2) 

the depletion of wild fish stocks harvested for fishmeal used in marine finfish aquaculture diets. 

One goal for the development of domestic sustainable aquaculture is to ensure that 

commercial aquaculture has minimal adverse effects on the environment. One way to achieve 

this goal is through development of improved methods of waste management for land-based 

and coastal/offshore aquaculture. Fish, through metabolic processes, excrete nitrogen, 

phosphorus and carbon dioxide (Beveridge 1987; Mugg, et al. 2000; Neori et al. 2004, 2007). Up 

to 49 kg nitrogen (N) and 7 kg phosphorus (P) can be released per ton of finfish produced per 

year (Chopin et al. 1999; Kautsky et al. 1996; Troell et al. 2003). In coastal waters, high levels of 

these nutrients can trigger harmful algal blooms and contribute to excessive growth of nuisance 

algae, which in turn have serious negative consequences on coastal ecosystems and the 

economy. These nutrients could instead be used to support the growth of economically 

important seaweeds (Neori et al. 2004; Chopin et al. 2008, Yarish & Pereira, 2008).  

On a global basis, seaweed 

aquaculture represents 24% of world 

marine aquaculture production on a 

weight basis and $5.7 billion U.S. 

dollars on a monetary basis (FAO 

2012). Nearly all seaweed aquaculture 

occurs in China, Korea and Japan. 

North America has very few seaweed 

aquaculture operations. The most 

notable in the Northeast is Acadian 

Seaplants, LLC, in Charlesville & 

Dartmouth, Nova Scotia, CA, 

producing the red seaweed Chondrus 

crispus for export to the Japanese food 

market (Craigie and Shacklock, 1995, Craigie 
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et al. 1999).  The primary commercial use of seaweed is as human food, either as sea 

vegetables or functional foods (Cordero, 2006; Nisizawa, 1987, 2006; Smit, 2004; Teas, 2006).  

Seaweeds are also used as a source of colloids for the food and cosmetic industries, as an 

ingredient in pharmaceuticals and neutraceuticals, as a supplement in livestock feed and as a 

soil amendment in agriculture (Yarish and Pereira, 2008; Neori, 2008; Braden et al. 2007; Saker 

et al. 2003; Turner et al. 2002; Pereira and Yarish, 2010, Pereira et al., 2012; Holdt and Kraan, 

2011; Craigie, 2011; Browdy et al. 2012). It has been used as a food source for abalone and 

urchin aquaculture and is currently being investigated as a replacement for fishmeal in finfish 

diets (Neori et al. 2004; Neori et al. 2007; Robertson-Anderson et al. 2008; Francis et al. 2008, 

Walker et al. 2009). In the 1980s, there was significant interest in seaweeds as a biomass source 

for methane production (Flowers and Bird, 1984; Gao and McKinley 1994), and there is current 

renewed interest in seaweed as a biofuel source for ethanol and methanol production (Horn et 

al. 2000; Matsui et al. 2006; Yokoyama et al. 2007).  However, the potential of most seaweeds 

as a feedstock for biodiesel is low, as the lipid content generally tends to below 5% dry weight 

except for some species of Porphyra/Pyropia, Codium and Hypnea (Sanchez-Machado et al. 

2004; Pereira and Yarish, 2010). There are a number of potential applications for habitat 

restoration (Carney et al. 2005), have been proposed as large-scale carbon sinks, as a method 

of removing heavy metals from marine environments (Davis et al, 2003), and even as a way to 

detoxify and remove TNT from seawater (Cruz-Uribe et al. 2007). 

Seaweeds have been successfully incorporated into a number of demonstration and pilot-scale 

IMTA and nutrient bioextraction systems.  A pilot-scale coastal IMTA project in New Brunswick, 

Canada uses kelp (Saccharina latissima and Alaria esculenta) and mussels (Mytilus edulis) as the 

extractive components in close proximity to salmon (Salmo salar) net pens (Chopin et al. 2008).  

In Portugal, Matos et al. (2006) demonstrated the effectiveness of three red seaweeds, 

Palmaria palmata, Gracilaria bursa-pastoris and Chondrus crispus in removing nutrients from 

the effluent of tank-based production of turbot (Scophthalmus maximus) and sea bass 

(Dicentrarchus labrax).  In Israel, Neori (1996) and Neori et al. (1996, 1999, 2000, 2003, 2004, 

2007, 2008) have developed small commercial scale IMTA systems incorporating gilthead 

seabream (Sparus aurata), the green seaweed Ulva lactuca, abalone and sea urchins. In South 

Africa, kelp (Ecklonia maxima) grown in the effluent of abalone aquaculture tanks was fed back 

to the abalone. Nutrient load in the effluent was significantly reduced and more of the 

exogenous nutrients were converted to abalone biomass (Bolton et al. 2006; Troell et al. 2006; 

Robertson-Andersson, 2008; Francis et al. 2008).  The seaweed in these systems can be used for 

human food, as a protein source in finfish aquaculture diets, as a source of pharmaceuticals, 

phycocolloids and other biochemicals, or as a carbon source for biofuel production (Horn et al. 

2000; Chopin and Sawhney, 2009; Chopin et al. 2008; Buschmann et al. 2008a; Kim et al., 2010; 

Pereira et al., 2012). 

A trial of nutrient bioextraction technologies in Long Island Sound and the Bronx River estuary 

cultivating native strains of Gracilaria tikvahiae  has been supported by the Long Island Sound 
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Futures Fund and the Connecticut Sea Grant College Program (Yarish et al., 2012a,b; Kim et al. 

2012).  To grow seaweed in a nutrient bioextraction (or IMTA systems), it is necessary to have a 

source of young plants. In Asia, native species have been isolated from wild populations; strains 

have been selected for desirable traits and are maintained as “seed” cultures.  Seaweed 

farmers often belong to a cooperative and obtain “seed” nets or lines from a seaweed culture 

facility (i.e. a seaweed nursery).   This manual describes how to set up a seaweed culture 

laboratory, defines the basic resource needs of these plants, and provides a culture system 

roadmap for the production of young “seed” plants of the native red alga, Gracilaria tikvahiae.   
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General Seaweed Culture System Components  

System 
 

In order to cultivate seaweed, a simple but well-equipped laboratory is essential.  The three 

most important components of a culture system are seawater media (seawater and nutrients), 

temperature and light.  This chapter offers a broad overview for laboratory system components 

that will be applicable to all types of seaweed culture. For more information on algal culturing 

techniques, the reader is urged to consult Andersen (2005).  

Seawater  

 

Successful seaweed culture requires a reliable supply of clean seawater.  Natural seawater is 

preferred over artificial seawater, as natural seawater contains all of the essential mineral 

components (over 50 known elements) in the natural ratios, which may or may not be available 

in artificial seawater.  Seawater salinities should be between 28-34 parts per thousand (ppt), 

and it is critical that it be clean and free of any organic or inorganic contaminants.  To avoid 

terrestrial runoff or salinity variation, natural seawater collection should occur during periods of 

dry weather, preferably at high tide, and at depths of approximately 3 meters (10 feet) below 

the surface. Seawater can be collected by boat or from a shore facility with a well-placed intake 

pump.  Water storage and transfer can be done in polyethylene tanks or 20-liter (5 gallon) 

carboys.  All new containers need to be leached before use by filling with clean water (ideally 

distilled water, but clean seawater can be used) and allowed to sit for several days before 

rinsing for use.  All containers and tanks should be well sealed to prevent contamination, and 

kept in a cool dark place to prevent growth of unwanted algae.   

 

Seawater should initially be filtered through a coarse filter during collection from the sea, using 

a sand filter or a canister filter, then further fine-filtered from there.  Initial rough mechanical 

filtration can be accomplished with sand filters (pool filters) or polyester bag filters with 20-35 

micron pore sizes. Further filtering can be accomplished with common household water filters, 

down to 0.2 microns, by pumping water through a series of canister filters of decreasing filter 

size (10-, 5-, 1-μm).  A 0.45-micron filter will separate out organics from dissolved inorganics, 

and filtering water down to 0.2 microns should eliminate almost all possible biological 

contaminants in the water, though organisms can get through if there are tears or holes in the 

filters.  For this reason, further sterilization of the water and periodic inspection of filters may 

be necessary to eliminate any contaminants that could threaten the culture (Fig 2).  
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Artificial seawater (AS) can be used, but caution is advised, for artificial mixes tend to have 

limited success compared to natural seawater.  If it is necessary to use AS, a certain amount of 

experimentation may be required to determine the best source of mixed salts.  They tend to be 

inconsistent, with great variability both between brands and within batches of the same brand. 

Artificial mixes may not have the same ratios of essential microelements present in natural 

seawater, which is why natural seawater is recommended for all culture work. 

Sterilization 

 

Once filtered, seawater should be sterilized, especially during culture initiation.  While it is not 

necessary to have axenic (“pure”) cultures to grow seaweed, the microscopic and juvenile 

phases are sensitive to contamination. There are a host of microorganisms that can feed on, 

compete with, or overgrow the macroalgal cultures, including other algae, fungi, bacteria, 

cyanobacteria and micro zooplankton (primarily protozoans).  Protozoan grazers can especially 

be a problem for the microscopic stages of the kelp and other seaweeds, if present at high 

concentrations. The only way to completely ensure sterility of seawater is through heat 

treatment.   

There are a few different methods available to sterilize seawater, and the best method will 

depend on the facilities available.  The most effective method of sterilizing seawater is by 

autoclaving, which ensures sterility through a treatment that applies extreme heat and 

Figure 2 . Seawater system for culture.  Initial filter, transport, storage, 

second filter, sterilization (UV, fine filter, or autoclave) culture. 
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pressure to seawater (Fig. 3).  Autoclaves are heavy 

walled closed chambers that can be used to sterilize 

liquids, metals, glass, or autoclavable plastics.  

Seawater can be sterilized in polypropylene, 

polycarbonate, or Pyrex containers.  Containers should 

only be filled ¾ of the way, with loosely applied caps, 

to allow for pressure changes within the container 

during the heating and cooling of the liquid.  Aluminum 

foil covers can be applied around the loose caps during 

the sterilization process to minimize exposure to air 

currents.  A liquid cycle (121°C; 1-2 PSI, 15-30 minutes 

depending upon the volume of liquid) is sufficient to 

kill all living organisms, including bacteria, viruses, and 

heat resistant spores.  In order to ensure the entire 

volume of liquid reaches the required temperature for 

a sufficient amount of time, containers should be 

allowed to equilibrate to the temperature of the 

warmed-up autoclave (30min-1hour) before running the cycle, and the cycle time should be 

increased for larger volumes of liquid.  After the cycle has run, the door of the autoclave should 

not be opened until the pressure inside is the same as the room to avoid boiling over of the 

liquid.    

Autoclaving can result in the formation of precipitates, especially phosphates, which are a 

critical micronutrient for seaweed growth.  This occurs because the high temperature and 

pressure applied drives CO2 gas out of the seawater, resulting in an increase in pH.  

Precipitation increases with higher levels of nutrients, so to avoid this, seawater is sterilized 

first, then nutrient solutions are added after it has cooled.  Seawater should be removed from 

the autoclave when it is safe to do so, and allowed to cool at room temperature before storing 

in a cool dark place.  It is best to store all sterilized water at 5-10°C to minimize chances of 

recontamination.  After the water has cooled, caps should be completely tightened to avoid any 

chance of contamination through air exposure. Autoclaved seawater should be allowed to sit 

for several days before using or aerated with regular air to restore CO2 equilibrium and lower 

pH levels.  If a traditional autoclave is not available, a large pressure cooker may be used to 

apply heat and pressure to sterilize smaller amounts of water in the same way.  

Seawater can be sterilized by application of heat only, through the processes of pasteurization 

and tyndallization. Pasteurization is accomplished by heating seawater up to a boiling point, to 

90-95°C for 30-60 minutes, and then cooling rapidly to less than 10°C.  Tyndallization applies 

the process of pasteurization three consecutive times to the liquid, over the course of three 

days.  This method takes longer to accomplish, but provides extra treatment to kill heat 

resistant spores that will not be effectively destroyed in the first pasteurization.  This can be 

Figure 3. Autoclave for sterilization 

of seawater and glassware. 
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accomplished with a stovetop or a microwave oven, making sure that the seawater is well 

covered to avoid contamination. 

Another way to sterilize water by application of heat is through flash sterilization.  This will kill 

most organisms in seawater, but may not kill heat resistant spores.  This method heats water 

up to a high temperature (70-90°C) in a very short time by passing through a tube or plate heat 

exchanger.  This may not kill all possible contaminants, but can be an effective way to treat 

larger amounts of seawater.  

Filter sterilization of liquid uses very fine filtration to exclude all living organisms, effectively 

sterilizing water without the application of heat. This method is used for small volumes of 

seawater or heat sensitive liquids, such as nutrient media and vitamin solutions.  Liquid is 

filtered through a 0.2-micron filter, which, in theory, should exclude all organisms, though 

imperfections or defects in the filter pore size can allow some through.  For small volumes, a 

reusable or disposable filter assembly is set up on a side arm flask, and liquid is pulled through 

the filter using a vacuum pump.  Fine filtering can also be a part of a multi canister filter system, 

where seawater is pumped through a series of decreasing filter sizes.   

A filtering system coupled to a UV light system may ensure extra treatment of seawater.  

Enclosed high-energy UV bulbs can be installed as part of the water filtration process.  Filtered 

seawater passing through a UV sterilizer will be exposed to UV radiation, destroying any 

remaining organisms that may have passed through the filter.  UV radiation may not be 100% 

effective, but can be an additional treatment to incoming seawater or water that cannot be 

autoclaved or heat sterilized.  

Seawater can be sterilized with a chlorine treatment, by adding liquid bleach (5% sodium 

hypochlorite) to sterilize, and sodium thiosulfate to neutralize after treatment.  After water is 

filtered to remove organic matter, bleach is added at concentrations of 1-5 mL of bleach per 

liter of seawater.  Water should be left to stand for several hours, avoiding exposure to direct 

sunlight.  After treatment, the bleach needs to be sufficiently neutralized before using.  To 

neutralize, a sodium thiosulfate solution (Na2S2O3 5H2O) is added at concentrations of 1 mL per 

4 mL bleach added.  The sodium thiosulfate solution is made by dissolving 250 grams of 

Na2S2O3*5H2O in 1 liter of water (Kawachi and Noel, 2005).  Neutralization of seawater should 

be verified with a chlorine test kit. 
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Table 1. Seawater sterilization options. 

 

 

Nutrient Media 

While natural seawater contains many of the necessary trace elements needed for seaweed 

culture, the quality and amount of nutrients can be variable and insufficient for culture work.  

Both natural and artificial seawater need to be enriched with a concentrated nutrient solution 

after the water has been sufficiently sterilized.  There are several different types of media, but 

all provide a mixture of essential macronutrients (nitrogen, phosphorus, calcium, potassium, 

sodium, chloride, etc.) and  trace elements (iron, manganese, zinc, molybdenum, copper, 

cobalt, zinc, etc.), metal chelators (EDTA), vitamins (B12, thiamine, biotin), and hydrogen-ion 

and metal-ion buffers (TRIS, EDTA).  Reagent laboratory-grade chemicals should be used to 

reduce the likelihood of contamination or impurities.   Macronutrient, trace metal, and vitamin 

solutions are usually made up separately then added together to produce the concentrated 

stock solution.  All solutions should be filter sterilized and refrigerated.  Vitamin solutions can 

be frozen or refrigerated, but care should be taken to maintain sterility (Harrison & Berges, 

2005).    

Nutrient solutions are made up in large quantities beforehand, filter-sterilized into clean stock 

bottles, and refrigerated.  It is useful to pre-proportion the nutrient solution into smaller bottles 

that are ready to be added to the volume of the culture tank to make seawater preparation 

easier.  Preparation of enrichment solution requires a clean, sterilized table space, clean, 

sterilized glass and plastic ware, and sterile techniques.  Only non-reactive metal instruments or 

glass should be used, as some latex and rubber can be toxic if leached into the media.  In order 
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to filter sterilize media, self- assembly glass filter units with disposable filter papers (0.2 micron 

or µm) can be used.  These units are placed into the mouth of a side-arm flask, and the liquid is 

pulled through the filter paper by suction underneath, created by a vacuum pump (Fig. 4).   

Instructions for preparation of this media can be found in Appendix A. 

 

 

Figure 4.  Vacuum pump assembly for filter sterilization (0.2 µm) of nutrient media (top).  

Filter assemblies can be disposable (left, bottom) or reusable (right, bottom). 

 

Seawater media must be changed regularly during the culture period in order to provide 

sufficient nutrients to the growing plants.  This is a simple operation that involves transferring 

plants from one culture vessel to a new one with fresh seawater media, taking care that the 

new culture water is at the same temperature as the old culture water to avoid stressing the 

seaweed.  This should be done in a clean environment, using sterilized forceps and gloves, 

avoiding any chance of contamination through air currents or contact.  Culture changes are 

usually done once per week or more in actively growing or dense cultures, and once every two 

to four weeks in cultures that are just being maintained and not actively growing.      
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Diatom Control 

The most common and problematic contaminants in a seaweed culture are single celled 

microalgae called diatoms (Fig. 5).  Diatoms are one of the most 

common types of phytoplankters, characterized by unique 

symmetric cell walls made of silica.  Centric diatoms are radially 

symmetrical (round), while pennate diatoms are bilaterally 

symmetrical (shaped like a long thin football).  Diatoms can exist as 

single cells, colonies, or filaments.  They are able to rapidly 

proliferate through both asexual and sexual means, and tend to 

smother all available surfaces, including culture substrates and 

young blades.  They are very likely to be introduced into cultures 

through natural seawater or on blades collected from the wild.  

Their small size and variable shapes allow them to pass though 

filtration systems and even UV sterilization.  In order to control 

growth of diatoms in cultures of young seaweeds, a saturated 

solution of germanium dioxide is added to the culture media at 1-2 

mL per liter of seawater.  This compound inhibits silica deposition in 

diatoms (necessary for cell wall formation) and effectively 

eliminates diatoms in the culture (Lewin, 1966).  Germanium 

dioxide should only be used when initiating cultures, and will not be 

a cost effective measure in large volumes of water.   

 

Temperature 

Water temperature control is a critical component in any seaweed 

nursery operation.  Seaweeds have an optimal temperature range 

for growth, as well as a range of upper and lower survival 

temperatures (see Lüning, 1990 for a general introduction to 

environmental factors regulating seaweed growth and production).  

Cultures can either be placed inside a refrigerated space (cold 

rooms or incubators) or in individual tanks that may be cooled with 

an aquarium-type chiller (Fig. 6).  If standard household 

refrigerators are available they can be converted into homemade 

incubators by installing fluorescent lights on the inside walls (make 

sure to install ballasts on the outside).  Temperature alarm 

monitoring systems with automatic dialers can alert culturists in the 

event of a temperature failure (Omega Systems make a variety of 

these alarms monitoring devices).  

Figure 5. Diatoms 

problematic in seaweed 

culture.  Top: diatom 

embedded in kelp blade, 

second: pennate diatoms, 

third: pennate and centric 

diatoms, bottom: centric 

diatom.  Scale bar = 10 

microns. 
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Lighting 

Seaweeds are photosynthetic organisms that incorporate inorganic materials into organic 

biomass using the energy of the sun.  Seaweeds, like land plants, utilize photosynthetically 

active radiation (PAR), which is the portion of light available for photosynthesis.  PAR comprises 

the same part of the light spectrum as visible light, and can be broken down into its colored 

components, from blue/violet (400nm, high energy) to red (700nm, low energy).  The 

underwater light environment is highly variable and dynamic, because as light passes through 

water it is absorbed and scattered by water molecules and particles.  The longer, lower energy 

red wavelengths are usually absorbed near the surface, while shorter, higher energy blue 

wavelengths tend to penetrate deeper into the water column.  While all of the algal groups 

(green, red, and brown) contain chlorophyll a and carotenoids, they have different 

photosynthetic accessory pigments.  Each type of pigment absorbs wavelengths in different 

parts of the spectrum, as shown below (Fig. 7), however, only certain wavelengths elicit a 

physiological response (often referred to as the action spectrum). 

Figure 6.  Environmental Culture Chambers, also known as incubators.  These can be any size, and 

can be purchased commercially or can be homemade.  Environmental chambers all have a means of 

temperature control, a light source with photoperiodic control, and aeration.  Left: Hotpack brand 

Incubator, Middle: Percival Biological Incubator, Right: Room- sized environmental chamber. 
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Figure 7. Light absorption spectra for photosynthetic pigments 

For the laboratory, fluorescent light bulbs will provide sufficient light energy for the culture of 

plants.  There are many different varieties of bulbs on the market, and the technology is ever 

evolving, so it is helpful to understand what type of light each bulb offers.  Light quality and 

quantity are important when choosing a bulb.  Higher output bulbs will provide higher light 

intensity or photon fluence levels. For this reason, the “high output” bulbs (or “HO”) are used in 

order to ensure enough light for the cultures.  The quality of light available from each type of 

bulb is determined by the difference in the inside coating of the glass.  There are three main 

types of bulbs, differentiated by their color temperature.  The color temperature is a value in 

Kelvins printed on the bulb.  Daylight bulbs have the highest color temperature, at 5000K or 

above, and are made to simulate natural sunlight.  Cool white bulbs have more light in the blue, 

with a color temperature around 4000K.  Warm white bulbs emit light in the red portion of the 

spectrum, with a lower color temperature of 3000K or less.  Cool white bulbs are best, because 

most of the photosynthetic pigments in algae are able to absorb light in the blue portion of the 

spectrum (Fig. 8). 

 

 

Figure 8.  Fluorescent bulb color temperatures 

To provide artificial lighting in the laboratory or indoor culture facility, cool white high output 

T12 fluorescent bulbs with electronic ballasts are best. However, more energy efficient bulbs 
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including T8 and T5 technologies are now replacing T12 bulbs. One note of caution,  the 

spectral composition of all the bulbs are not equivalent, hence our reticence to use T5 bulbs vs 

the older T12 bulbs. The spectral compositions of all these bulbs are readily available by the 

manufacturers including General Electric, Phillips and Sylvania. Light can be provided from 

above or from the sides of clear containers, and several independently controlled bulbs can be 

used to increase or decrease light levels.  Window screening can also be used to control light 

intensity by placing layers between the light source and the cultures, each layer of 1mm mesh 

screen resulting in a 40-50% reduction in light.   

It is important to know the intensity of light available to plants, as light requirements change 

over time.  Usually, new cultures require lower light levels, while developing plants require 

more light.  Very low light levels (1-10% of normal culture conditions) can be used to maintain 

cultures over a long period of time.  Quantum light meters are used to measure the amount of 

light available for algal growth.  Light meters measure photosynthetic photon flux density, given 

in units of micromoles of photons per meter squared per second (μmol m-2 s-1).  Very good 

handheld quantum meters (e.g. Apogee Instruments, LI-COR) can be found on the Internet for 

order, with a wide variation in the cost, ranging from $300 – $2000.      

Lights should be connected to an interval timer to control photoperiod.  Photoperiod is the 

alternating period of light and dark, which is very important for normal development and 

growth of seaweeds.  A neutral photoperiod is commonly used, which is 12 hours light followed 

by 12 hours of darkness (12:12, L:D).  To establish the photoperiod, all outside light sources 

(such as windows or other light fixtures) should be eliminated.  A long day photoperiod consists 

of long days and short nights, usually 14-16 hours of light followed by 8-10 hours of darkness.  A 

short day photoperiod consists of only 6-8 hours of light followed by 16-18 hours of dark.  Algae 

reproduction and growth is often triggered by changes in photoperiod and/or temperature, so 

manipulating photoperiod is a useful tool in a culture center (see Lüning, 1990, for further 

information on photoperiod).  

 

Laboratory 

Basic laboratory equipment for successful algal culture will 

include a microscope, a thermometer, a refractometer, a 

light meter, and some simple laboratory glassware.  

 A compound microscope is essential to determine 

successful spore release, spore density, and development 

of microscopic stages (Fig. 9).  A high-powered dissecting 

scope is also very useful for monitoring larger plants 

throughout the culture period, or for isolating spores.  

Microscopes should be kept covered with dust covers when 

not in use, and should be kept clean and dry.  Microscope 
Figure 9. Dissecting (left) 

and compound (right) 

microscope. 
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accessories include lens paper, Windex or alcohol, and glass slides and coverslips.  A 

haemocytometer, specially etched for the counting of microscopic cells, is useful for spore 

solution density determination.   

Some useful equipment to have in the lab will include a refractometer (Fig. 10), a light meter, a 

pH meter, a thermometer, and a magnetic stir plate.  A refractometer is a simple handheld tool 

that measures salinity of seawater.  A pH meter is required for 

culture media preparation, as well as for monitoring culture pH.  

pH meters need to be calibrated with buffer solutions before each 

use, rinsed before and after each use in deionized water, and 

stored in an electrode storage solution.  A magnetic stir plate with 

stirrer bars is used for preparing nutrient media solutions (Fig. 

11).  

Glass and plastic ware for the lab will include volumetric flasks, graduated cylinders, beakers, 

flasks, and various culture dishes (Fig. 11).  Borosilicate glass, Teflon, and polycarbonate are all 

common laboratory materials.  Any material used in the lab should be non-reactive and non-

toxic, and thoroughly cleaned before use.  New glass or plastic ware needs to be pre-cleaned 

before use.  This is done by washing, soaking in a dilute 10% hydrochloric acid solution, 

followed by a soaking in deionized water for at least 1-2 days.  This step ensures the removal of 

any residue or chemical that could leach into the seawater or nutrient media.  All lab ware 

should be carefully washed using laboratory detergent, rinsed in tap water, followed by a rinse 

in deionized water to remove any residual nutrients, or trace or heavy metals that can be 

present in tap water.  All types of rubber, metal, or reactive materials should be avoided, and 

new tubing should be thoroughly rinsed before use.  The size and type of glassware will depend 

on the needs of the grower.  Glassware, brushes, and glassware detergents are available from 

laboratory supply companies.  If buildup occurs on glassware with use, it can be soaked in a 

10% hydrochloric acid bath for at least several hours, and then rinsed twice with deionized 

water. Acid baths should be prepared with proper protective equipment (goggles, gloves, and 

apron) and stored in a closed container to avoid evaporation.  Any critical portion of the culture 

process should utilize only clean, rinsed, covered and sterile glassware to avoid any 

contamination.  Washed, dried, and sterilized glassware should be stored in a clean cupboard, 

away from air currents.  

Figure 11. Useful lab items (from top 

left to right): forceps, sterilized 

glassware, lab book, pH meter, stir 

plate, Bunsen burner, pipettes. 

 

 

Figure 10. A Refractometer. 
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Glassware, tanks, and all laboratory equipment and working spaces should be clean and sterile 

to avoid contamination in cultures.  Glassware and metal instruments can be sterilized by 

applying moist heat or dry heat.  Moist heat is applied in an autoclave or pressure cooker, (1-2 

bars of pressure at 121°C), making sure the steam penetrates the material, and caps (either 

aluminum foil or a plug) are applied loosely to containers.  Dry heat can be used to sterilize 

glass or metal, by heating in an oven for 3-4 hours at 150°C.  Aluminum foil is used to cap or 

cover equipment, ensuring that all openings are covered to maintain sterility upon removal 

from oven or autoclave.    

 

A spray bottle of bleach solution or ethyl alcohol solution is very useful to have in the lab, for it 

can be used to sterilize and clean working areas and other equipment (Fig. 12).  A clean working 

station will ideally be set up in a laminar flow cabinet (Fig. 13), but if this is not available, a clean 

room with minimal air movement is best.  To set up a clean working station, the working 

surface should be cleaned with a microbial disinfectant (e.g. Amphyl ® cleaner & disinfectant) 

or 70% ethyl alcohol solution before and after use. The ethyl alcohol solutions can be stored in 

small bottles or plastic containers. 95% solutions of the ethyl alcohol should be available to 

sterilize stainless steel tools (forceps, dissecting needles, blades).  An open flame from an oil 

lamp or gas burner is also useful for sterilizing metal tools that are dipped in the ethyl alcohol 

solution.  Parafilm®, a plastic wrap used in laboratories, is very useful for covering and sealing 

containers, minimizing contamination and reducing evaporation of cultures.     

Figure 12. Necessary laboratory equipment for successful cultivation: Left: sterile vacuum 

filter for making stock solutions, “Algal Culturing Techniques”, various sized Erlenmeyer 

flasks, beaker, refractometer, thermometer, graduated cylinder, Petri dishes, multiwall 

plates, air pump, and Pasteur pipettes. Right:  Custom filter (10-100 micron mesh), squirt 

bottle with sterilized seawater, and glass stir rod with rubber policeman scraper useful for 

culture changes. 
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Figure 13. Two types of clean hoods.  Left, a biological safety cabinet, suitable for working 

with cultures or hazardous materials.  Right, a laminar flow cabinet, suitable for working with 

cultures and non-hazardous materials. 

A record of all cultures in the lab, nursery, or culture center should be kept in the lab with the 

source, history, and details of all of the cultures.  This will allow the grower to track cultures 

over time.  All cultures, chemicals, and seawater media should be well labeled, and appropriate 

federal and state laws should be followed in the handling, storage, and disposal of all chemicals 

and cultures.   

Long-Term Maintenance 

It is a good idea to maintain stock cultures of all cultivars in the lab.  Stock cultures should be 

kept at lowered temperatures and light levels to minimize growth and need for culture 

changes.  For long-term maintenance, cold-temperate plants should be kept at 5-10°C, warm 

temperate plants at 15-20°C.  Illumination is best kept at 1-10% of normal culture conditions, 

which is at or near compensation level (generally 2-7µmol photons m-2 s-1). 
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Gracilaria 
 

Gracilaria tikvahiae 

Gracilaria tikvahiae is the only Gracilaria 

species native to New England (Fig. 14).  

The genus Gracilaria, in the Phylum 

Rhodophyta (a group of the red seaweeds), 

contains over 100 species found around the 

world, and many are wild harvested and 

cultivated for food, animal feed, and the 

phycocolloid called agar.  They are warm 

water seaweeds, usually preferring 

temperatures in the 15-30°C range, making 

them a potential summer species for 

culture in New England.  Gracilaria is an ideal candidate for aquaculture due to its warm-water 

growing season, ease of propagation, relatively high growth rates, high tolerance to a range of 

environmental conditions, and its existing and potential commercial value.   

Biology 

Gracilaria tikvahiae has a variable morphology, which depends on the strain and growing 

conditions.   It is a bushy, branching seaweed, comprised of rounded branches which are 

irregularly or dichotomously branched from rounded, 

compressed, or flattened axes (Fig. 15).  Blades are usually red, 

but can be brownish, green, or almost black depending on light 

and nutrient conditions.  Blades arise from a flattened disc that 

is formed from a spore.  Growth occurs by an apical meristem, 

located at the tip of each branch.  Blades can reproduce 

through spores or by vegetative propagation, and can be found 

as either attached or free floating in coastal areas. 

Gracilaria is a species that has a wide range of tolerance for changing environmental 

conditions.  It is common in estuaries or bays, often found in intertidal or shallow subtidal 

areas, less than 1 meter deep, either attached to rocks or free floating.   It is often found in 

embayments, which are environments with reduced water flow and may be rich in ammonia 

and nitrate.  They are a euryhaline species, which means they can tolerate a wide range of 

salinities, from about 10-40 ppt, though they grow best in the 25-33ppt range.  They can survive 

temperature ranges from 0-35°C but have an optimal range of 20-28°C.   

Figure 14. Gracilaria tikvahiae in culture 

Figure 15. Gracilaria tikvahiae 
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Figure 16. The Gracilaria life cycle. 
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Gracilaria has a three-stage life history that is similar to many other red seaweeds, often called 

a Polysiphonia-type life history (Fig. 16).  It has an isomorphic (“same shape”) alternation of 

generations. This indicates that two of its three life stages, the tetrasporophyte and the 

gametophyte stage, are morphologically identical. The life cycle has three different stages; a 

diploid tetrasporophyte stage, a haploid gametophyte phase, and a diploid carposporophyte 

phase that occurs on the female blades.  These stages are distinguishable only by microscopic 

examination of the reproductive structures or presence of the third stage, which appear as 

bumps on the branches of the female blade. The mature diploid tetrasporophyte produces four 

haploid tetraspores within each tetrasporangium by undergoing meiosis.  Tetrasporangia occur 

in the cortex (the outer edge of cells) of the thallus, and can be found anywhere on the blade.  

The tetraspores appear as red cross-shaped (cruciate) spots, and can be observed with a 

microscope or even a hand lens.  When tetraspores are released from the blade, they drift 

passively in the water column until they settle and adhere to a substratum.  The spore will 

begin to internally divide, then enlarge and develop a multicellular disc.  The center of this disc 

will then develop a raised dome and the blade will develop from this initial growth.  Each disc 

may produce many upright thalli, each of which may separate from the disc and continue to 

grow as a free-floating plant.  

The plants that develop from tetraspores are either male or female haploid gametophytes, 

indistinguishable until maturity.  Mature male gametophytes produce white spotted areas with 

spermatangia on their thallus, observable under a microscope.  Female gametophytes become 

apparent when their eggs (carpogonia), produced within the cortex of the plant, are fertilized 

by spermatia (non-motile sperm), and new tissue is built up around the zygote.  The new 

diploid, globular structure is the third phase of the life cycle, the carposporophyte, occurring on 

the haploid female thallus.  The small bump is a cystocarp, and inside the cystocarp, the original 

zygote undergoes many cell divisions (mitosis), eventually producing many diploid spores, 

called carpospores.  These non-motile, spherical spores are released into the water column and 

carried to a suitable substratum by water currents.  Once settled on a substratum, the spores 

will adhere, divide and form a multicellular disc. These multicellular discs will initially produce a 

protuberance that develops into an upright thalli, which will develop into a tetrasporophytes, 

thus completing the life cycle.  Each disc may also produce many upright thalli, each of which 

may separate from their disc and continue to grow as a free-floating plant.  

Besides the relatively complicated three-phase sexual reproductive life cycle, Gracilaria is also 

able to reproduce asexually, through vegetative propagation.  A single individual has the 

capacity to become hundreds or thousands of individuals, through continual fragmentation.  

Each fragment produced will grow and develop into an individual, and these blades can be 

further fragmented into several individuals, and so on.  This is possible because the growth 

occurs in the apical meristem, which is growth from the tips of the branches.  Each tip, then, 

has the capacity to grow and branch into its own blade.  This allows for a much simpler means 
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of propagation, and also creates consistency in a culture environment.  Vegetative propagation 

is the most common means of culture, as it is quicker, easier, and more efficient than starting 

from spores, and it allows for consistency, as all blades in a culture can be genetically identical, 

all having the same parent (sometimes referred to as a clone).  This is very important if the 

blades are being grown for a specific characteristic, such as agar consistency, specific 

morphology, or favorable growth rates and biomass yields.  However, the vegetative 

propagation of a blade does not have an attachment stage, so the culture method needs to be 

adapted to the local needs and situation of the grower.   

 

Cultivation 

 
There are several different methods used for the cultivation of Gracilaria, and the ideal system 
for any one grower may be a combination of two or several of these following options: 
 
Culture Initiation 
 

 Tip Isolation 

 Spore Isolation 
 
Biomass Production 
 

Asexual (Vegetative) Propagation: 

 Tank culture 

 Suspended Rope Culture 

 Bottom Culture 
 

Sexual Propagation: 

 Spore seeded substratum (the use of carpospores or tetraspores) 
 
 
Culture Initiation 

To initiate a culture, it is necessary to establish a unialgal culture (containing no other alga) by 
either spore or tip isolation.  Clean, healthy, actively growing, and/or reproductive ‘parent’ 
fronds exhibiting desirable characteristics should be selected.   Fronds (sometimes referred to a 
thallus) may be chosen from wild populations or from existing cultures.   
 
When making a wild collection, fronds should be held and transported in an environment 
similar to (or cooler than) the one it was collected in to minimize stress.  Clean plastic bags, 
plastic containers, or buckets can be used for collection and transport.  Gracilaria should be 
transported in moist paper towels or gauze to avoid drying and exposure.  Regardless of the 
culture initiation method used, the critical step in culturing Gracilaria (or any seaweed) is the 
cleaning process.  Any wild collected frond will be carrying a host of microscopic organisms 
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(diatoms, protozoans, fungi, other micro-, macro-organisms, or cyanobacteria) that can 
potentially contaminate, inhibit or destroy cultures.  An initial rinse of the seaweed in the field 
can remove any visible fouling organisms, followed by a more thorough cleansing process in the 
lab.  Whenever possible, it is recommended to make voucher herbarium specimens for more 
rigorous genetic study. 
 
A successful culture is established in the lab with a healthy, actively growing, unialgal isolate 
free of any contamination.  One successful culture can provide all of the ‘seedstock’ necessary 
to “seed” an entire farm.  It is important to maintain a ‘seedstock’ culture in the lab for back-up 
and preservation purposes.  To increase biomass from one isolate, fronds are fragmented and 
given sufficient light, space, and nutrients to multiply in number and size, and the process is 
repeated until enough biomass is reached to either “seed” a larger farm system or for direct 
harvest.   
 
Tip Isolation 

The area of new and active growth is located at the tips of every branch on a Gracilaria frond, 
the apical tissue.  To obtain new ‘starter plants’ to initiate a culture, tips are cut from the parent 
frond, cleaned thoroughly, and placed in favorable growing conditions.  Each tip will then grow, 
elongate, and branch into a new frond.  To prepare a tip for isolation, a clean working area 
should be set up in a clean room with a draft-free, clean working space and a flame for 
sterilization of metal instruments to avoid any contamination of cultures.   
 
Collected fronds from the field should be processed in a separate room from your culture 
isolation working space for the initial rinsing.  The fronds are initially placed in the first 
container, and then fronds are individually selected and rinsed in a series of vessels by grasping 
with large forceps, submerging and shaking vigorously underwater several times.  This can be 
repeated several times in a series of vessels where the last should contain the fronds ready for 
tip isolation.  If there are still epiphytes present on the tissue, gentle scrubbing with cotton 
balls, cotton-tipped swabs, or paper towels can remove any clinging organisms.  Gracilaria is a 
euryhaline algae (able to tolerate a wide range of salinities), so a quick rinse (30-60 seconds) in 
clean, deionized freshwater can be used as a final cleansing step.  A small section of the frond 
can then be removed for tip isolation, and placed in a small dish with sterilized seawater and 
moved to the clean working space (Fig. 17). 
  

 
Figure 17. Cleaning wild-collected Gracilaria (from left to right): 

 1) Initial rinse in clean seawater; 2) Selection of clean, healthy fronds and second rinse; 3) 

Scrubbing and selection of tips for isolation 



27 

 

 
To isolate tips, a clean, sterilized work surface is essential.  The work area should be set up with 
sterilized jeweler’s forceps (fine tipped tweezers), a sharp scalpel or razor blade, ethanol, and a 
flame source.  A small section of the parent frond is placed in a Petri dish with sterile seawater, 
and healthy tips are excised with a scalpel or razor blade.  Once all tips from a section are cut, 
the excess frond is removed and the tips are further cleansed.  It is useful to cut the tip a little 
longer than what is needed, about 1mm, in order to grasp the cut end of the tip with jeweler’s 
forceps (Fig. 18).   
 
Once a number of healthy tips have been excised, each tip is individually cleaned in sterile 
seawater.  A series of Petri dishes can be set up in the working area to clean individual tips.  A 
tip is placed in sterile seawater, grasped at the cut end with fine tipped forceps, and wiped 
down with a sterile cotton-tipped swap.  This is followed by an agar drag through a prepared 
agar plate (see index for instructions), which will pull off any additional microscopic 
contaminants.  A scrubbed tip is grasped, again, at the cut end, and dragged through the agar 
gel at least three times.  Each drag should go through an unused portion of the agar gel.  When 
the agar gel is used up, plates should be properly disposed of.  The tip should now be free of 
contaminants, and can be placed in sterilized seawater prepared with Von Stosch’s Enrichment 
media (VSE) and germanium dioxide (GeO2).  Multiple tips should be isolated from each frond in 
order to increase chances of obtaining a clean culture, because even all of these careful steps 
will not guarantee a unialgal culture.  To maximize success, always check your culture under a 
microscope. 
 
 
 

A. Excising Healthy Tips  C. Agar Drag for cleansing tips B. Tip collection  

D. Initiation of culture 
from tips  

E. Scaling up cultures F. Scaling up cultures 

Figure 18.  Isolating and cleaning tips for establishing a unialgal culture. 
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Individual tips can be isolated and cultured separately in small Petri dishes or flasks.  They 
should be placed in VSE seawater with GeO2 under low light (10-20 µmol photons m-2 s-1), with 
a 12:12, L:D photoperiod, at 20°C (=68.8°F).  Lower light may discourage the growth of any 
remaining epiphytic contaminants.  Tips will begin to elongate in about a week or two. Once 
tips have begun to grow and appear clean, light aeration can be applied to cultures to increase 
growth rates.  Cultures should be changed once every two weeks initially, then once per week 
as growth rates increase.  Once tips begin to elongate and branch into larger fronds, they 
should be transferred to larger and larger containers to encourage growth (Fig. 18). 
 
Once a clean culture is established, it can be expanded through fragmentation, by breaking up 
one frond to start many new fronds with the fragments. The growing environment is optimized 
to increase growth rates by gradually increasing light levels (up to 250 µmol photons m-2 s-1), 
increasing growing area (larger containers/tanks), and increasing frequency of media changes 
(to increase availability of nutrients). Clean glass culture bottles, jars, flasks or carboys of 
varying sizes are excellent for expanding or maintaining your cultures.  Once a sufficient 
biomass is reached, the fronds can be transferred to larger indoor or outdoor tanks to expand 
further.  To preserve or maintain original culture strains over long periods of time in the 
laboratory, growing environments are minimized, reducing light, reducing temperature, space, 
and frequency of media changes. 
 
Spore Isolation     

                                                          
Clean cultures can also be initiated from either 
carpospores or tetraspores.  Both types of spores can 
be released and isolated in the same way, though each 
will give rise to a different phase in the life cycle.  
Carpospores are obtained from mature cystocarps, 
which are apparent as bumps on the female thallus 
(Fig. 19).  These are easily identifiable, being obvious 
without the aid of a microscope.  A microscope, 
however, is needed to observe the presence of the 

tetrasporangium on the thallus of the tetrasporophyte.  
These appear as small reddish spots scattered 
throughout the cortex of the thallus.   
 

To release spores, it is important to clean the parent frond well by shaking, scrubbing, and 
rinsing in sterilized seawater.  Reproductive branches can be removed and wiped clean with a 
cotton-tipped swab and followed by an agar drag.  A gentle desiccation period can be utilized to 
stimulate release of spores by wrapping the branch in damp paper towels, placing in a Ziploc® 
bag, and storing for a few hours or overnight in darkness or dim light.  If fronds are mature, the 
desiccation period can be skipped and placed in seawater for release.  To release spores, short 
sections of the fronds can be placed in sterilized seawater in a Petri dish over glass slides and 

Figure 3. Carpospore release from a 

cystocarp formed on the surface of a female 

plant 

Figure 19. Carpospore release from a 

cystocarp formed on the surface of a 

female thallus. 
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kept under low light at 20°C.  Release may take place at once, or can occur over several days.  
Spore release can be checked under a dissecting microscope.   
 
Once there are spores released in the water, a small sample can be removed from the Petri dish 
and placed in a fresh dish with new media.  Individual spores can then be selected with a very 
fine-tipped Pasteur pipette under a microscope.  Selected spores are placed on cut glass slides 
(25mm x 25mm) or on coverslips in small Petri dishes with sterilized VSE seawater.  Dishes can 
be kept undisturbed at 20°C under 30 µmol photons m-2 s-1 light, with a 12:12, L: D 
photoperiod.  Spores will settle within 12-24 hours after release, adhere to the glass slide, and 
begin to divide.  After the initial division, the diameter will begin to increase as a multi-cellular 
disc is formed, a few days after settlement.  The center of the disc will then undergo further cell 
division to create a raised dome in the center, but this is a slow process, taking up to 2 months 
to form a 2-3 cm cylindrical axis.  This is the beginning of the new frond (Fig. 20). 
 

 
 
Figure 20. Establishment of clean Gracilaria laboratory cultures from spores 

 
 
Spore initiation will result in an attached frond, and this can easily be transferred to new dishes 
by moving the glass slide, or the disc can be carefully scraped off the slide for an unattached 
frond.  Once the first shoot begins to grow, light can slowly be increased, aeration can be added 
and sufficient water changes and larger containers can increase growth rates (Fig. 21).  While 
spore isolation reduces the opportunity for contamination, the period of development is much 
longer than tip isolation.  It can take 2-3 months to reach the size of an isolated tip.  Spore 
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isolation allows the grower to start new cultures from a known point, however, for more 
control over their cultures.  If a culture is started from a carpospore, the grower can be certain 
that the resulting frond is a tetrasporophyte, and if started from a tetraspore, it is certain that 
the resulting frond is a haploid gametophyte, though it is impossible to determine the sex until 
the frond is mature. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Biomass Production 

 
Asexual Propagation 

The most common method of Gracilaria cultivation is through vegetative propagation.  This is a 
simple process that allows the grower to start many new fronds from the tips of any single 
frond.  This is a form of clonal propagation, where all of the new fronds started from the initial 
“parent” will be genetically identical, which is useful for consistency in production.  This is 
probably the easiest form of propagation, but it results in unattached, free floating fronds, 
which lends itself well to tank cultivation, but presents some challenges for any type of 
attached culture.   
 

Figure 21. Gracilaria lab culture.  Establishing new 

fronds and building biomass. 
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Culture Systems 

 
Tank Culture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gracilaria does very well in a tumbled tank culture system (Fig. 22).  This is due to its ability for 
unattached vegetative growth over long periods of time, ease of propagation, and high growth 
rates under ideal conditions.  In this type of system, fronds are stocked in a tank of appropriate 
size and are given light, nutrients, and aeration.  This type of system is intensive, requiring an 
input of energy (light, nutrients, and water movement) for culture.  While tank culture may 
require more input energy, it allows for full control of the growing parameters as well as 
contamination control.  It is the best method for developing ‘seedstock’ for further out-
planting, and will result in the highest quality fronds for edible or 
cosmeceutical/nutraceutical/pharmaceutical markets.    
 
Aeration is a critical component of the tank culture, and is responsible for delivering several 
critical elements to the system.  Aeration should be well distributed throughout the tank to 
deliver sufficient water movement to constantly ‘tumble’ the fronds around the tank.  This 
allows for a higher stocking density, as the constant movement reduces shading limitations, 
increases light exposure, and increases photosynthetic efficiency throughout the culture.  

Figure 22. Building biomass for Gracilaria culture: Laboratory scale, small 

tanks, medium tanks, large outdoor seawater tanks. 
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Aeration also increases availability of carbon dioxide and stabilizes the pH, which can rise to 
very high levels in an actively photosynthesizing culture.  Water movement created by aeration 
simulates natural water currents, which are important for delivering nutrients to the surface of 
the fronds.  Seaweeds will take in nutrients from the surrounding water, and if there is no water 
current to replenish the water around the thallus, a “boundary layer” of nutrient-depleted 
water will be established, and growth will be inhibited.  Water current is very important for 
sufficient nutrient delivery to all fronds in any culture, especially an intensive culture with a 
high stocking density.  Current can also be important for reducing contamination on the fronds, 
as it may make it more difficult for other organisms to settle on the surfaces of the fronds if the 
water around the fronds is turbulent.   
 
Any type of air blower can provide aeration, though the air should be filtered before entering 
the cultures (Fig, 23).  The distribution of air can be established by running rigid tubing or PVC 
pipes throughout the tanks to create full circulation.  Air should be moving up from the bottom 
of the tanks on the outside and the center of the tank to ensure there are no ‘dead spots’ 
where fronds could accumulate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The addition of sufficient nutrients to a culture is essential to obtain maximum growth rates 
and biomass yields.  In a tank culture, this can represent a system expense, though the coupling 
of seaweed tanks with other ‘waste’ streams for alternative nutrient supplies is a possibility, as 
Gracilaria has a high bioremediation potential.  Some alternative nutrients may include waste 
from other cultured animals (fish or shellfish), sewage, or fermentation residue from anaerobic 
digesters.  In the absence of an alternative fertilizer, conventional land-plant fertilizer may be 
added.  Fertilizer should be added in small daily increments to avoid ammonia toxicity.  
Gracilaria is able to take up nutrients in excess of their immediate needs and store these 
‘reserves’ in their tissue for use in nutrient depleted situations.  This storage capacity is useful 
to the farmer, for fronds can be ‘fertilized’ by soaking in high-nutrient media for 6-12 hours, 
then transferred to another site that may be low in nutrients.  The seawater media in a culture 
should be changed on a regular basis to remove possible contaminants and to provide fresh 
nutrients.  Larger cultures can be monitored for nutrients levels and half of the water volume 
changed on a regular basis to conserve inputs.    
 

Figure 23. Aeration system for tank culture.  A blower with air filter and aeration 

tube arrangement for a round tank. 
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Light should be provided to the culture system in such a way to maximize growth while 
minimizing cost.  Initially, lighting inside the laboratory can be provided with fluorescent lights 
or greenhouse growing lights, and light should be placed on a photoperiodic timer.  As the 
culture system is expanded, natural lighting should be utilized, though fronds should be 
protected from extreme exposure by covering with neutral density screening.  A light meter is 
an essential tool for determining and adjusting light levels as appropriate.  Light (given non-
limiting levels of nutrients) is an important parameter for controlling pigment levels in 
Gracilaria, and a controlled environment allows the grower to adjust light levels for desired 
pigment levels or the production of photo-protective pigments.  This may or may not be 
important, depending on what the final product is being sold for.  Light, aeration, and nutrients 
all work together to produce the final product.  It is important to ensure that all fronds are 
exposed to enough light through constant turn over and tumbling, and nutrients need to be 
provided at non-limiting levels to allow for optimal growth rates, given sufficient light.  
 
The culture is easily expanded by breaking apart, or fragmenting, the fronds, which will 
continue to branch and grow into new fronds (Fig. 24).  The culture should be kept at a density 
that will maximize growth with efficient use of the resource inputs (e.g. 2-4 g L-1).  As the 
culture expands, the density can be reduced by removing fronds or by moving to a larger 
container or tank.  This is an efficient way to grow up a large amount of initial biomass for 
further cultivation in a field setting or in larger tanks.    For more in-depth discussion of lab and 
tank rearing technologies see Craigie and Shacklock (1985), Craigie (1990) and Craigie et al. 
(1999). 
 

 
Figure 24. Building biomass in a tank culture through fragmentation of fronds. 
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Suspended Rope Culture 

In order to reduce input costs of culturing seaweeds, field culture is an option, wherein 
seaweed fronds are placed out in the coastal 
environment to take advantage of the available 
natural resources.  This is an extensive farming 
practice, where inputs and labor are relatively low, 
compared to the highly controlled intensive 
laboratory and tank culture.  Suspended rope culture 
is a relatively simple fixed grow-out system, 
comprised of a floating longline held in place by 
anchors and buoys.  Gracilaria plants are attached to 
the line by entwining or tying, and are further grown 
out on the lines (Figs. 25, 26).  Gracilaria can be 
outplanted on longlines when temperature rises 
above 15 ˚C (60 ˚F).  As biomass increases, fronds can 
be harvested by ‘trimming’ the outer portion of fronds and leaving fronds to re-grow to cut 
again every two to four weeks, or by a total harvest, by taking in the whole frond.  Culture sites 
will vary considerably in their conditions, and local prevailing light, temperature, nutrient and 
salinity conditions should be determined for optimal growth (Fig. 27).   
 
 
 

 
Figure 26. Inserting Gracilaria bundles onto a longline for out-planting. 

 
 
Problems associated with field culture of Gracilaria include grazing, fouling, and environmental 
stress.  Grazing by herbivorous fish or other predators is not as much as a problem in the 
Northeast as in the warmer climates, but smaller grazing animals are a possibility.  Fouling is the 
biggest challenge in an open water grow-out situation.  Many different types of fouling 
organisms may settle on the lines, including epibionts, such as tunicates, hydroids, bryozoans, 
mussels, worms, and amphipods, and epiphytes, such as other green, red, and brown seaweeds 

Figure 25. Gracilaria bundle inserted in 

line for field culture. 
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or microalgae.  There are several methods available for minimizing fouling.  These include 
controlling depth, stocking density, and out-planting or harvest time.  Depth can be adjusted, 
either up or down, to minimize settlement or survival of particular organisms, which tend to be 
more abundant at a particular depth.  Increasing stocking density and maximizing growth rates 
will allow the fronds to outcompete or exclude potential fouling organisms.  All organisms in 
the Northeast, including fouling organisms, have a seasonally controlled life cycles.  Once the 
life cycle is understood, timing the outplanting of the seaweed lines and harvest of the crop can 
be a very important method for avoiding fouling settlement windows.   
 
Extreme weather events can pose a hazard to the farm, either by causing damage to the 
infrastructure or by stressing the fronds.  Farms should be sited in protected areas, and should 
be strong enough to withstand storms or high wind events.  Flexibility in the design of a farm is 
important to minimize losses.  An example of farm risk management would be the ability to 
bring lines in for storage in holding tanks during dangerous storms, or being able to adjust 
depth so that lines could be lowered to avoid extreme wave action or runoff events.  Gracilaria 
is a stress tolerant species, but extreme changes in light, salinity or temperature can stress a 
culture unit and reduce growth and production.  

  
Figure 27. Gracilaria open water farm (left). Deployment and cultivation of Gracilaria on 

longlines in the open water farm (middle).  The harvesting of Gracilaria bundles. 

 
Bottom Culture 

Bottom culture is a popular culture technique in warm temperate climates, but may be difficult 
in the Northeast due to leasing area limitations.  Bottom culture involves either growing fronds 
that are ‘seeded’ onto rocks and spread on the bottom in a shallow area, or by attaching fronds 
to lines that are strung on stakes and suspended just above the bottom.  The technique of 
suspending lines from stakes is very similar to the suspended line culture, but is a little less 
flexible with depth adjustment.  Access, however, may be easier in shallow sites.   
 
Sexual Propagation: 

Spore seeded substratum (carpospore or tetraspore) 
 
Spore seeding is an alternative means of Gracilaria propagation.  Instead of fragmenting a frond 
to produce new fronds, spores from a mature carposporophyte or tetrasporophyte are seeded 
onto a substratum, allowed to develop into juvenile fronds, and placed out into the growing 
area.  The advantage of spore seeding is the convenience of attached fronds, while the 
disadvantage is the long incubation period to grow the settled spores into young fronds.  The 
development of a juvenile frond 1-3cm in height can take two months in culture.  Spore-
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originated fronds can also exhibit a higher level of polymorphism, since all fronds are not 
genetically identical, as with the asexually propagated fronds.  This will increase capacity for 
adaptation and survival in fluctuating or changing environments, but may not be ideal for a 
specific commercial purpose.   
 
Spores can be released over the desired substrata (seed line or rocks) by laying prepared, 
mature spore-bearing thalli on a screen suspended in water.  Spores are released over a 2-4 day 
period at 20°C, and once released, spores are allowed to settle undisturbed for 24-42 hours in 
dim light.  If seeding both sides of a line wound on a frame, the frame is inverted and the same 
release and settlement period is done for the other side.  The seeded substratum is then kept 
at 20°C under low light (20-40 µmol photons m-2s-1) for approximately two months for 
development of the juvenile fronds.  Culture media (VSE) should be changed every two weeks 
to start, then more often as fronds start to develop.  Gentle aeration can be applied for water 
movement.  Once juvenile fronds are visible, they can be transferred to the culture site.  A 
protected site should be chosen to avoid frond loss in high-energy environments.   
 
Spore seeding of rocks may be a way to reseed or restock natural populations of Gracilaria.  
Once the fronds are established, the seeded rocks can be broadcast on the bottom of a 
protected shallow area, in order to help reestablish natural populations or supplement 
harvests.       
 
Mixed Culture Methods 

Several different culture methods may be employed in the culture of Gracilaria, and best 
practices will depend on the facilities available to the grower.  Fronds grown in tanks may be 
used to stock long lines, and additional spore seeding of ropes may be possible to supplement 
the harvest and increase productivity.  Other types of grow out systems are possible, including 
net tubes instead of lines, or floating cages stocked with unattached fronds.  A ‘spray culture’ is 
another option, where recirculating water is sprayed continuously over fronds that do not have 
to be submerged in a tank of seawater.  Fronds grown in areas or time periods of low levels of 
nutrients in the field can be ‘fertilized’ by placing in land-based tanks with high levels of 
nitrogen for 6-12 hours, then placed back into the field.  Successful culture and production will 
depend on the grower’s flexibility, inventiveness, and good management practices.  For more 
in-depth discussion of cultivation techniques the reader is urged to consult Yarish and Pereira 
(2008).          
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Appendix 

Lighting 

- Light Resources: Bulbs, Information, and Distributors 

- GE Lighting:  www.gelighting.com 

- Philips: www.usa.lighting.philips.com  

- Sylvania: www.sylvania.com 

 

Handheld Quantum Light Meters 

- Apogee Instruments www.apogeeinstruments.com 

- LI-COR Environmental www.licor.com 

 

Light measurements 

- µE=µmol photons m-2 s-1=(lux)(0.013) 

- Light measurements conversions http://www.egc.com/useful_info_lighting.php  

 

Supplies 

Artificial Sea Water  

- Instant Ocean (www.instantocean.com ) 

- Tropic Marin Sea Salt (www.tropic-marin.com ) 

- Ultramarine Synthetica www.waterlife.co.uk/seaquariums/ultramarine.htm   

- Sigma-Aldrich Dry Sea Salt Mixture (www.sigmaaldrich.com ) 

Pre-mixed Enrichment Stocks 

- National Center for Marine Alga and Microbiota NCMA (formerly CCMP) 

https://ncma.bigelow.org/ 

- Culture Collection of Algae and Protozoa (CCAP) www.ife.ac.uk/ccap 

- Sigma-Aldrich f/2 media (www.sigmaaldrich.com ) 

- f/2-AlgaBoost, ES enrichment stocks (www.algaboost.com) 

Aquarium Equipment & Supplies 

Tanks, pumps, aeration, tubing, filters, lighting, etc 

- Deep Blue Professional (www.deepblueprofessional.com) 

- Aquatic Ecosystems Inc (www.aquaticeco.com) 

- Lifeguard Aquatics (www.lifegardaquatics.com/)  

- Frigid Units, Inc (www.frigidunits.com)  

- Emperor Aquatics, Inc. (www.emperoraquatics.com) 

- Aqualogic (www.aqualogicinc.com) 

- Polytank, Inc. (www.polytankco.com) 

- Ironfish Aquaculture Directory (www.ironfish.org) 

http://www.gelighting.com/
http://www.usa.lighting.philips.com/
http://www.sylvania.com/
http://www.apogeeinstruments.com/
http://www.licor.com/
http://www.egc.com/useful_info_lighting.php
http://www.instantocean.com/
http://www.tropic-marin.com/
http://www.waterlife.co.uk/seaquariums/ultramarine.htm
http://www.sigmaaldrich.com/
https://ncma.bigelow.org/
http://www.ife.ac.uk/ccap
http://www.sigmaaldrich.com/
http://www.algaboost.com/
http://www.deepblueprofessional.com/
http://www.aquaticeco.com/
http://www.lifegardaquatics.com/
http://www.frigidunits.com/
http://www.emperoraquatics.com/
http://www.aqualogicinc.com/
http://www.polytankco.com/
http://www.ironfish.org/
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- Percival Scientific (www.percival-scientific.com) 

- Omega Engineering Inc. (www.omega.com)  

- Hydroponic and Greenhouse Suppliers (www.sunlightsupply.com, www.hydrofarm.com, 

etc) 

 

Laboratory 

Agar Media for Preparation of Agar Plates 

- To prepare sterile agar plates, use new disposable plastic Petri dishes or sterilized glass 

Petri dishes.   

- An agar solution is prepared by adding 1.5% agar powder to a 50:50 sterilized 

seawater/fresh water solution in a flask. 

- The media should be microwaved or heated on a stir plate to both fully dissolve the agar 

powder and to sterilize the solution (about 5 minutes).  Cover the opening of the flask 

with tinfoil upon removal. 

- Prepare a clean working space free of any air currents to pour hot agar into plates.  An 

open flame in the working space is used to sterilize the neck of the flask by passing it 

through the flame before pouring.   

- While pouring the agar solution, open the Petri dishes as little as possible, holding the 

cover at an angle, and keep the lid over the dish.  Cover the poured dish.  Place agar 

plates on an undisturbed surface to cool and set.  Agar medium will set into a stiff gel at 

room temperature.   

- Stack cooled and hardened agar plates upside down in the refrigerator.  Do not freeze.  

Plates are stacked upside down to prevent condensation from dripping down onto the 

agar surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.percival-scientific.com/
http://www.omega.com/
http://www.sunlightsupply.com/
http://www.hydrofarm.com/
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Haemocytometer counts for cell density 

 

A bright line haemocytometer is a specially etched 

glass slide made for taking blood cell counts, but is 

also useful for spore density calculations because it 

allows for an estimation of number of cells per 

milliliter of spore solution.  The center of the 

haemocytometer slide contains two loading wells, 

each leading to a number of etched blocks on top of 

the slide which are apparent under the microscope.  

A haemocytometer comes with a special cover slip, 

and this should be placed over the center of the 

etched glass.  There are two small wells on both sides 

of the glass slide, under the cover slip.  These are loaded by placing a well-mixed drop of the 

sample solution in each well with a fine tipped pipette. The drop containing the spores will be 

pulled over the series of blocks, each with a different grid pattern.  The middle block is divided 

up into 25 gridded squares, representing 10-4 ml.  This is the block that should be counted.  The 

haemocytometer should be viewed at 100x or 200x, and one square at a time should be 

counted.  It may be easier to view the etched blocks under the microscope by turning down the 

light and closing the aperture of the microscope to increase contrast.  The eyes should be 

methodically moved from the left to the right, and a consistent way of counting the cells on 

lines should be established.  Cells on dividing lines are only counted in each square from the top 

(or bottom) and the left (or right).  Consistency is very important for getting cell counts.  A 

handheld clicker can be used if the density is very high, or the solution can be diluted by adding 

more seawater to count a more manageable sample.    

Density Calculation: 

Count the number of spores found in the 25 blocks that make up the middle block of the 

haemocytometer.  This number represents the amount of cells in 10-4 ml, so to find the density 

of spores per ml, just add 4 zeros to your count.   

Example:  
Count = 40 spores 
Just add 4 zeros to your count = 400,000 spores / mL 
Now to find the total amount of spores available, multiply this by the total amount of spore 
solution that you have:  Ex:  100ml * 400,000 spores = 40,000,000 spores / 100 mL 
To determine the amount of spore solution to add to your spools for inoculation, determine the 
total amount of seawater being used for the inoculation: 
Ex: 6 Liters = 6,000 mL 

Haemocytometer and coverslips  
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Spools should be inoculated at 2,000-5,000 spores/mL.  To find the total amount of spores 
needed for your inoculation, multiply your desired density by the total amount of seawater 
being used. 
Ex:  2,000 spores/mL * 6,000 mL = 12,000,000 spores total 
Now you can divide the total amount of spores by the number of spores per mL in order to 
determine how many mL of spore solution you should add to inoculate your spools.  
Ex: 12,000,000 spores / 400,000 spores ml-1 = 30 mL spore solution  
 
 

Germanium Dioxide  

Diatoms are a common type of contamination in seaweed cultures, but can be eliminated with 

addition of a saturated solution of germanium dioxide to culture media.  A saturated stock 

solution can be prepared by dissolving 250mg of GeO2 per 1 Liter of deionized water.  This stock 

solution is then added to culture media at a concentration of 2mL/L seawater.  Stock solutions 

should be stored in a refrigerator and properly labeled. Brown algae are also sensitive to high 

concentrations of GeO2, so this concentration should not be exceeded when culturing kelp.  

One to two weeks of treatment is usually sufficient to eliminate diatoms in a culture. 

 

 

 

Micropipette Preparation  

 

Micromanipulation by micropipette allows for the selection and isolation of microscopic spores 

under a microscope.  Micropipettes can be prepared in the laboratory using disposable glass 

Pasteur pipettes. 

 

Holding the top of the pipette in one hand, and the small-bore end with a pair of steel forceps, 

hold the end of the pipette over an open flame to soften the glass until malleable.  Take the 

pipette out of the flame and pull the ends apart, stretching the glass to form a very small bore.  

Snap the end off, and carefully place aside.  Several of these micropipettes can be made up 

beforehand for isolation work under the microscope.     

 

 

 

 

 

 

 

 

 

1) Hold glass pipette over 

flame until soft 

2) Pull ends apart to stretch 

glass 3) Snap off end 
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Nutrient Media 

 

VON STOSCH'S ENRICHED SEAWATER MEDIUM 

von Stosch's Enrichment (as cited by Ott, 1966) 
 
      The seawater should be filtered (Whatman's #1) to remove large organic particles and sand.  
Then sterilize by autoclaving (time: 100  ml requires 10  minutes; 2 liters requires 40 minutes; 3 
liters requires 50 minutes; and 5 liters requires 70 minutes).  To each liter of seawater, then add 
the following: 
       
                  Salts                          1 liter of seawater 
                  (1) Na N03                         42.50 mg 
                  (2) Na2HP04 12H2O        10.75 mg 
                  (3) FeSO4   7H2O              278.00 ug 
                  (4) MnCl2   4H2O              19.80 ug 
                  (5) Na2EDTA 2H2O          3.72 mg 
       
                  Vitamins 
                  (6a) Thiamine-HCl        0.20 mg 
                  (6b) Biotin                     1.00 ug 
                  (6c) B12                         1.00 ug 
It is convenient to prepare a stock solution of each salt in distilled water; of such concentration 
that 1 ml of the stock solution gives the required concentration of each ingredient.  The three 
vitamins may be incorporated in the same stock solution, which should be refrigerated.   The 
salts and vitamins after preparation into stock solutions should be filter sterilized.  
 
      I.  To make stock solutions use deionized distilled water and clean volumetric flasks. 
      II. Filter each stock solution through separate 0.22 um Millipore filters.  Each solution will 
have to be sterilized separately. 
      III. Aseptically pour filtered volume of liquid into autoclaved stock bottles. 
      1 liter stock solution              2 liter stock solution 
      (1) 42.500 grams                      85.000 grams 
      (2) 10.750                                  21.500    
      (3) 0.278                                      0.556    
      (4) 0.0198                                    0.039    
      (5) 3.720                                      7.440    
      (6a) 0.200                                    0.400    
      (6b) 0.001                                    0.002    
      (6c) 0.001                                    0.002    
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Modified Von Stosch Enrichment (VSE) for use with red algae 

      **To sterilized seawater, add 1 mL per 1 L of seawater of prepared solutions 1-6 after combining 3 and 4 

together prior to addition** 

Solution Components    

Ingredients                                      

Solution 1: Nitrogen Quantity (grams) Quantity (X2) Quantity (X3) 

Deionized water  1L 2L 3L 

Ammonium chloride (NH4Cl)           26.75 g 53.49 g 80.24 g 

    

Solution 2: Phosphate Quantity (grams) Quantity (X2) Quantity (X3) 

Deionized water  1L 2L 3L 

Sodium Phosphate. Dibasic, 12-Hydrate, Crystal  

(Na2HPO4*12H2O)            0.4 g 0.8 g 1.2 g 

    

Solution 3: Iron* (Combine with 4 immediately prior 

to addition to seawater) Quantity (grams) Quantity (X2) Quantity (X3) 

Deionized water  1L 2L 3L 

Ferrous sulfate (FeSO4*7H2O) 0.278 g 0.556 g 0.834 g 

    

Solution 4: EDTA *(Combine with 3 immediately prior 

to addition to seawater) Quantity (grams) Quantity (X2) Quantity (X3) 

Deionized water  1L 2L 3L 

Disodium Ethylenediamine Tetraacetate (Na2EDTA) 3.72 g 7.44 g 11.16 g 

    

Solution 5:  Manganese Quantity Quantity (X2) Quantity (X3) 

 Deionized water                      1L  2L 3L 

Manganese Chloride (MnCl2)      0.0198 g 0.0396 g 0.0594 g 
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Solution 6:  Vitamins* (Store in freezer) Quantity Quantity (X2) Quantity (X3) 

Deionized water                                  1L 2L 3L 

 Thiamine 0.2 g 0.4 g 0.6 g 

Biotin 0.001 g 0.002 g 0.003 g 

Vitamin B12 0.002 g 0.004 g 0.006 g 

 

Notes on VSE preparation: 

 The original source of nitrogen for VSE is sodium nitrate (NaNo3). This can also be used 
at 42.5 g per 1 L of deionized water.  The original source of phosphate for VSE is Na2 β-
glycerophosphate.  This can be substituted at 6.48 g per L of deionized water. 

 Prepare all six solutions separately using clean sterilized volumetric flasks, clean 
pipettes, digital balance, and mix with magnetic stirring bars. 

 Filter sterilize each solution using a 0.2µm filter and a vacuum pump assembly. Vitamins 
should not be heat sterilized.   

 Media solutions should be stored in the refrigerator, vitamins (solution 6) should be 
stored in the freezer and thawed for use 

 All chemicals should be dated when received and when opened on the bottle 

 All solutions should be clearly labeled at every step, and aseptic technique should be 
used in preparation 

 It is easiest to make up large amounts of the solutions initially, then aliquot out usable 
amounts in smaller bottles (well sealed) for convenience.  The prepared bottles can then 
be kept ready in the refrigerator for water changes. 

 Full strength is 1ml/L 

 Germanium dioxide is another, separate component that is added to cultures to prevent 
growth of diatoms.  The solution can be prepared in advance and refrigerated.  This 
solution is added at 2mL/L of water.        

 All glassware should be sterilized, and the working space should be very clean and 
include a flame of some sort to prevent contamination of this high nutrient media. 
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Nutrient Media Supplies List 

Media preparation 

Glassware: (Pyrex) 

 Volumetric flask (1000mL; measuring) 

 Erlenmeyer flasks (3000mL; mixing and storing) 

 Graduated cylinders (500 or 1000 mL) 

 Storage flasks and bottles 

 Digital scale (0.0001 g; 3 decimal places) 

 Weigh paper/boats 

 Metal chemical spoon or spatula (measuring) 

 Safety goggles and gloves 

 0.2 micron filter for media sterilization (Corning Disposable Sterile Bottle Top Filter, 150mL 

Funnel, #25965-45) 

 Pyrex screw-cap media storage bottles (media storage) 

 Clean work space 

 Flame (for sterile technique; Bunsen burner, etc) 

 Sterile pipettes, 10mL (measuring; disposable plastic or glass autoclavable)   

 Pipette bulb or motor 

 pH meter and associated buffers 

 Stirring plate and magnetic stir bars 

 Parafilm 
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General Culture System Materials and Estimated Costs 

Item Base  

Seawater System 

Seawater filters—3-step cartridge system, down to 1 micron  Online, Hardware stores 

Filter cartridge housings  40 Pentek Blue 

Filter cartridges (20, 5, 1 micron size) 5 Pentek 

Seawater Holding Tank System   

500 gallon plastic holding tank  400 Ace Roto-mold  

UV Light for seawater sterilization 400 
Smart UV Sterilizers/Emperor 
Aquatics 

External water pump to circulate water 200 Marinedepot.com 

Round Polyethylene or Fiberglas Tanks, various sizes 200-2000 
Aquatic Ecosystems, tank 
suppliers 

Polycarbonate or glass 10L clear autoclavable Carboys 50-200 
Laboratory, Homebrewing 
suppliers  

Flasks  Laboratory suppliers 

Petri Dishes   

Forceps   

Microscope   

Pasteur pipettes  
20 

  (box of200) www.sigmaaldrich.com 

Temperature and Power Alarm and Auto Dialer 330 
Omegaphone.  
www.omega.com 

   

Lights   

CW-HO Fluorescent Lamps - High Output - Cool White  Greenhouse growers supply 

 Light Bulbs & Fixtures 200 Lighting Suppliers 

Photoperiodic timers 30 Aquarium, Hardware supply  

   

Aeration   

Aquarium aeration pumps 30 Aquarium Supply 

Aeration tubing, small diameter, 25' 6 Aquarium Supply 

Rigid Aeration tubing for large tanks, large diameter 30 Aquarium, Aquaculture Supply 
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